
. WAV A*-i_.A. nUi/L' *_*.*. XU11

fx>

X

. U1U. WOAJ.J

REPORT DOCUMENTATION PAGE
form Approved

OM8 No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington DC 20503

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE

2. REPORT DATE
October 27, 1994

3. REPORT TYPE AND DATES COVERED

Final Report, 9/28/92-5/31/94

An:Introduction to the Principles of Computer Science:
A Reuse -Oriented Philosophy

6. AUTHOR(S)

Dr. Murali Sitaraman
Dr. Douglas E. Harms

(West Virginia University)
(Muskingum College)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Statistics and Computer Science
PO Box 6330
West Virginia University
Morgantown, WV 26505-6330

5. FUNDING NUMBERS

DAAL03-92-G-0412

8. PERFORMING ORGANIZATION
_., REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES)

Ü. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

ONSORING / MONITORING
ENCY REPORT NUMBER

Piiu 3oct°t'?.H ~wR

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

The long-term goal of our project is to redesign the
software development courses in computer science
around a philosophy of software reuse, where
new components are constructed largely from
assembling existing ones. The emphasis is on formal
specification, design, and development of "highquality"
reusable components. Ada, when augmented with the
RESOLVE technology for component-based software
development, facilitates introduction this approach.
This result has been successfully demonstrated in
principle and in practice for the second course in
computer science under this project

14. SUBJECT TERMS

Ada, Software reuse,Software Engineering,
Undergraduate CS Education

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED
NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

LQ
16. PRICE COOE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

An Introduction to the Principle of Computer Science —
A Reuse-Oriented Philosophy

ARO Proposal Number: 30998-MA; Contract Number: DAAL03-92-G-0412

Principal Investigators: Murali Sitaraman and Douglas E. Harms

Foreword

There is growing consensus that to overcome .its crisis, the software industry must make
serious strides in adopting the successful practices of more mature engineering disciplines.
This would include, for example, injecting formal methods into the software-development
process and whole-heartedly embracing die idea of building software from off-the-shelf
reusable components.

Towards addressing the software's chronic crisis, over the past several years, the reusable
software research groups at The Ohio State University and West Virginia University have
been investigating the software development philosophy whereby a software system is
properly conceptualized and constructed as an assemblage of reusable components. As a
result of these research efforts, a conceptually robust and sound discipline — referred to as
RESOLVE — for the design, specification, implementation, verification, and application of
reusable software components — has evolved [SIGSOFT 94].

The long-term goal of the our overall research program is the integration of component-
based RESOLVE software technology into the entire software development sequence of the
undergraduate curriculum, and evaluate the influences of the appproach. The current
project showed the feasibility of the successfully demonstrated the feasibility of this view
by redesigning the second course in computer science, without eliminating the principles
traditionally taught in the course.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

I

Availability Codes

Avail and/or
Special

2. Table of Contents

3. List of Appendices 3
4. Body of the final report 4
5. Report of inventions 6
6. References in the final report 7
7. Appendices 8

3. List of Appendices

Appendix A — List of Deliverables mailed earlier as of July 1993

Appendix B — An Outline for the First Course in Computer Science

4. Body of the Flinal Report: DAAL03-92-G-0412

A. Statement of the Problem Studied

The long-term goal of our project is to redesign the fundamental courses in computer
science around a philosophy of software reuse and evaluate the influences of this approach.
The emphasis here is on the specification, design, and development of "high quality"
reusable software components, and construction of new software by assembling existing
reusable components rather than starting from scratch.

The reuse-centered approach is aimed at remedying the following fundamental problems in
undergraduate education in computer science:

1. Absence of a context, and hence motivation, for learning fundamental principles of
computer science such as abstraction, early in the curriculum,

2. Absence of a context for emphasizing and teaching that specification and design issues
are central to problem-solving activity early in the curriculum

3. Relatively late exposure to principles of software engineering resulting in relatively
inexperienced graduates in applying these principles,

4. Generation of students underprepared to function effectively in a component-based
software industry, and

5. Minimal exposure to software engineering principles (without any good context) for
non-computer science majors.

The focus of the present project was to redesign the second course in computer science
Mowing a reuse-centered approach, without eliminating the principles traditionally taught
in the course. The project has resulted in materials for teaching this course in Ada.

B. Summary of the Most Important Results

1. Focus on reuse provides an excellent context for presenting important computer science
principles.

The idea that a software component will be reused elsewhere permits the students to see
readily the importance of key software engineering principles. The realization that the
developer of a component and its prospective client are likely to be different people leads
the students to new thinking. In particular, the importance and relevance of the following
principles become clear to students early in their curriculum.

• Separation of the specification and implementation details of a component
• Unambigous and abstract expression of a specification
• Design
• Certification of correctness
• Efficient implementations
• Maintenance

2. Focus on reuse permits introduction to principles of specification and design early in the
curriculum.

In the reuse-based course, the laboratory instructor and the student form a team. In some
projects, the student uses a reusable component (that has already been implemented by the
instructor) to solve a problem. In others, a student is the developer of a component. This
permits students see the importance of the principles of design and specification early in the

curriculum.

3. Freshmen students can understand and use formal specifications, if an "understandable"
specification language such as RESOLVE is used [SIGSOFT 94]; They are also able to
master the RESOLVE design discipline for Ada.

4. Ada, augmented with formal specifications, is an excellent vehicle for teaching software
engineering and software reuse principles in computer science curriculum.

5. Non-computer science majors get an important insight into principles of software reuse
and software engineering.

6. The materials are appropriate for a variety of institutions

7. The principles contained in the materials are applicable for multiple programming
languages, even though the materiah themselves use Ada

C. List of Publications

Only direct results are reported here.

1. Sitaraman, M., Principles of Computer Science — CS 16 Course Notes, Spring 1994,
150 pages approx. (Enclosed)

2. Sitaraman, M. and Gray, J., Software Reuse: A Context for Introducing SE Principles
in a Traditional CS Second Course," Proceedings ofTriAda 1993, Seattle, WA, September
1993, to appear.

3. Gray, J., "Teaching the Second Course in Computer Science in a Reuse-Based Setting:
A Sequence of Lab Assignments in Ada," Proceedings of the Eleventh National Conference
on Ada Technology, Wiiliamsburg, VA, 38-45, March 1993.

D. List of Participating Personnel

Dr. Murali Sitaraman (West Virginia University)
Dr. Douglas E. Harms (Musingum College)
Mr. Jeff Gray (MS Student, West Virginia University)

Gray, J., The Role of Reuse in Introducing Software Engineering Principles in a Computer
Science Second Course, Masters Project Report, Dept. of Statistics and Computer Science,
WVU, Morganotown, WV, May 1993.

5. Report of Inventions

M. Sitaraman, Principles of Computer Science — CS16 Course Notes, Barnes and Noble,
Morgäntown, West Virginia, 1994.

6. References in the Final Report

[SIGSOFT 94] Special Feature: Component-Based Software Using RESOLVE,
ACM SIGSOFT Software Engineering Notes, vol. 19, no. 4, eds. M. Sitaraman and B.
W. Weide, October 1994, 21-67.

7. Appendix A — List of Deliverables mailed earlier as of July 1993

1. Sitaraman, M., Principles of Computer Science — CS 16 Course Notes, 1993, 170
pages approx.

These notes have been developed as explained in the proposal. They include 12
organized chapters. They are now being used at the West Virginia University.
Notes have also been sent to Muskingum College, Indiana University Southeast,
and The Ohio State University for possible adaptation.

2. Assignments/Exercises

These can be found at the end of the 12 chapters.

3. Exams

A set of 3 exams is enclosed.

4. Overhead materials

One re-producible set of 59 overheads is enclosed.

5. Lab Sequences for the Second Course in Computer Science

2 different sets are enclosed. Also see the information on publications.

6. Results of experimentation

The second course was taught following the reuse-centered approach at West
Virginia University by Sitaraman in Spring 1993 and is currently being taught again
in Summer 93 by instructor Winsome Mundy.

7. Student feedback

From the confidential evaluations, we note that the student feedback has been
positive for the offering in Spring 93. 8 students evaluated the course as good or
excellent and 4 found the course fair or satisfactory.

Most students found the course notes "very valuable," though they are still
evolving. Some of them actually suggested that the notes be made into a textbook
and were better than the textbook they used in their first computer science course.
Efforts on this front are underway. Some students found the labs harder than the
others. A look at the final grades suggests that the performance of the students by
way of grades was about average. The significant influences of the current course,
of course, are expected to be in their later courses. More information can be found
in the publications.

8. Other textbooks and comparison

A comparison of notes with other popular textbooks and approaches can be found
in Gray's Masters project report

7. Appendix B — An Outline for the First Course in Computer Science

1. Introduction
Why write computer programs?
Reusing recurring program pieces
The engineering metaphor and software construction

2. Formal Specification
Modeling
The Integer Facility

Procedures and Procedure Calls
Packages: with and use Clauses
Variables
Initialize and Finalize Operations
Using the Integer Facility

The Prompt Facility
Pre-conditions and Post-conditions
Parameter/Variable States
Logic

3. Application of components
Introduction to secondary operations and layered components
Applications - The Hardware Store Example
Formal Reasoning of programs using reusable components

4. Decisions
The Boolean Facility
The if Statement
Reasoning about decisions

5. Iteration
The indefinite loop statement
The definite loop statement
Reasoning about loops

6. Character Strings
Specification of the Character String Faculty
Applications

8. Generic Structures and Arrays
Specification of ArrayJTemplate
Application - Introduction to searching and sorting
Reasoning of Programs Using Arrays

9. Records

10. Ada Specific Features
Built-in Integer, Boolean, Character, String, Array, Record
Floating points
Parameter modes - in, out, in out
Functions
elsif portion of if statement
Unconstrained arrays; Discriminant Records

